Original Article

Species Identification and Strain Typing of Fonsecaea pedrosoi Using Ribosomal RNA Gene Internal Transcribed Spacer Regions

Hiroshi Tanabe, Masako Kawasaki, Takashi Mochizuki, Hiroshi Ishizaki

Department of Dermatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan [Received: 6, November 2003. Accepted: 20, January 2004]

Abstract

The restriction fragment length polymorphism (RFLP) in the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene (rDNA) was analyzed on *Fonsecaea pedrosoi* isolates kept in the Department of Dermatology, Kanazawa Medical University, Japan.

On the bases of the RFLP patterns with Dde I and Msp I, 131 isolates were classified into 5 types (D1-D5) and 4 types (M1-M4), respectively.

Combining the RFLP patterns with *Dde* I and *Msp* I, the isolates were further classified into 6 rDNA-types which corresponded to the 6 mtDNA-types reported by Kawasaki *et al.* based on the mtDNA-RFLP patterns, except for a single strain of mtDNA-type 7, which was indistinguishable from mtDNA-type 2.

The strains of each rDNA-type formed a clade on the phylogenetic tree constructed from sequences of the ITS regions. ITS-RFLP analysis discriminated *F. pedrosoi* from 11 other species of pathogenic phaeoid fungi except *F. compacta*. These results strongly suggest that the typing based on ITS-RFLP is reliable and that *F. pedrosoi* and *F. compacta* are conspecific.

Compared with mtDNA-RFLP analysis, ITS-RFLP analysis is less tedious, permits simultaneous analysis of many samples and gives equivalent results rapidly. This analysis is therefore useful for typing or epidemiologically investigating *F. pedrosoi* and for differentiating it from other dematiaceous fungi.

Key words: Fonsecaea pedrosoi, strain typing, ribosomal RNA gene, restriction fragment length polymorphism, nucleotide sequence, phylogeny

Introduction

The fungus *Fonsecaea pedrosoi* is a major cause of chromoblastomycosis and phaeohyphomycosis. Kawasaki *et al.*¹⁾ classified 120 *F. pedrosoi* strains into 7 types on the basis of restriction fragment length polymorphism (RFLP) of mitochondrial DNA (mtDNA) using the restriction enzyme *Hae* III. They reported a link between the types and their geographical distribution and commented on the usefulness of the method for identifying and typing the species. On the other hand, Untereiner and Naveau²⁾ described the phylogenetic relations of several species of pathogenic black fungi including Herpotrichiellaceae, based on the internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and 28S rDNA of their nuclear ribosomal RNA gene (rDNA). In their study, they investigated one strain of F. *pedrosoi* (CBS 271.37), but they neither investigated the intra-species variations nor typed the strain.

In 1999, Caligiorne *et al.*³⁾ performed RFLP analysis on small-subunit rRNA gene regions and ITS regions of 7 black fungi. They studied 12 strains, including 3 strains of *F. pedrosoi* and 2 of *F. compacta*, and reported that the interand intra-species variations were large in the ITS regions.

In this study, we applied ITS-RFLP analysis to type *F. pedrosoi*, which had already been typed by mtDNA analysis. We then investigated the base sequences of the ITS regions of

Address correspondence to: Hiroshi Tanabe MD.

¹⁻¹ Daigaku, Uchinada, Ishikawa 920-0293, JAPAN

Department of Dermatology, Kanazawa Medical University

KMU no.	Dde I*	Msp I **	rDNA type	Species	mtDNA type	Origin	Country
3537	D2	M2	3	Foncecaea pedrosoi	Fp2	RV 4004	Zaire
3538	D2	M2	3	F. pedrosoi	Fp2	RV 4478	Zaire
3539	D2	M2	3	F. pedrosoi	Fp2	RV 5146	Zaire
3540	D2	M2	3	F. pedrosoi	Fp2	RV 9268	Zaire
3541	D2	M2	3	F. bedrosoi	Fp2	RV 14661	Zaire
3542	D2	M2	3	F. pedrosoi	Fn2	RV 25295	Mozambique
3543	D2	M2	3	F hedrosoi	Fp2	RV 48561	Zaire
2544	D2	M2	3	F. hodroooi	r pz En2	DV 40796	Zaire
3344	D2	IVIZ	3	F. pearosoi	грд	KV 49700	Zaire
3040	D2	MZ	3	F. pearosoi	Fp2	KV 38100	Zaire
3648	DI	MI	I	F. pedrosoi	Fp4	9087	Venezuela
3649	D1	M1	1	F. pedrosoi	Fp4	7109	Venezuela
3650	D1	M1	1	F. pedrosoi	Fp4	5720	Venezuela
3651	D1	M1	1	F. pedrosoi	Fp4	1975	Venezuela
3665	D1	M1	1	F. pedrosoi	Fp4	806	Argentina
3666	D2	M1	2	F. pedrosoi	Fp1	13409/160	Argentina
3669	D1	M1	1	F. bedrosoi	Fn4	85014/97	Argentina
3670	D1	M1	1	F hedrosoi	Fp4	Durand	Argentina
2671	DI	NII NII	1	F. pearosoi	rp r E-4	12400/160	Argentina
3071	DI		1	r. peurosoi	rp 4	10040/07	Argentina
3072	D2	MI	2	F. pearosoi	Fp1	10240/97	Argentina
3673	D1	M1	1	F. pedrosoi	Fp4	2078	Argentina
3709	D1	M1	1	F. pedrosoi	Fp4	IFM 46418	Costa Rica
3710	D1	M1	1	F. pedrosoi	Fp4	IFM 46419	Costa Rica
3711	D1	M1	1	F. pedrosoi	Fp4	IFM 46420	Costa Rica
3712	D1	M1	1	F. pedrosoi	Fp4	IFM 46421	Costa Rica
3713	D2	M1	- 2	F hedrosoi	Fn1	IFM 46422	Costa Rica
3714	D2	M1	2	F. pedrosoi	Fp1	IFM 46498	Costa Rica
371 1 9715	D2	NII NII	2	F. pearosoi	Fp1	IFM 46494	Costa Rica
3715	D2 D1	MI	2	F. pearosoi	Fp1	IFM 46424	Costa Rica
3716	DI	MI	1	F. pedrosoi	Fp4	IFM 46425	Costa Rica
3717	D1	M1	1	F. pedrosoi	Fp4	IFM 46426	Costa Rica
3718	D2	M1	2	F. pedrosoi	Fp1	IFM 46427	Costa Rica
3719	D1	M1	1	F. pedrosoi	Fp4	IFM 46428	Costa Rica
3720	D1	M1	1	F. pedrosoi	Fp4	IFM 46429	Costa Rica
3721	D1	M1	1	F. bedrosoi	Fn4	IFM 46430	Costa Rica
3799	D1	M1	1	F hedrosoi	Fn4	IFM 46431	Costa Rica
3722	D1	M1	1	F. pedrosoi	Fp4	IFM 46432	Costa Rica
2794	DI	NII NII	1	F. pearosoi	rp r E-4	IFM 46499	Costa Rica
3724	DI	IVI I	1	F. pearosoi	rp4	IF IVI 40433	Costa Rica
3725	DI	MI	1	F. pedrosoi	Fp4	IFM 46434	Costa Rica
3726	D1	M1	1	F. pedrosoi	Fp4	IFM 46435	Costa Rica
3727	D1	M1	1	F. pedrosoi	Fp4	IFM 46436	Costa Rica
3728	D1	M1	1	F. pedrosoi	Fp4	IFM 46437	Costa Rica
3730	D1	M1	1	F. pedrosoi	Fp4	IFM 46439	Costa Rica
3732	D1	M1	1	F. pedrosoi	Fp4	IFM 46441	Costa Rica
3772	D2	M1	2	F. pedrosoi	Fn1	TIMM 530	Ianan
3773	D2	M1	2	F hedrosoi	Fnl	TIMM 533	Iapan
2774	D2	M1	2	F hadroooi	Fp1	TIMM 606	Japan
377 1 9775	D2	IVII M 1	2	F. peurosoi	rpi E 1	TIMINI 000	Japan
3773	D2	MI	2	F. pearosoi	rp1	TIMIN 622	Japan
3//6	D2	M1	2	F. pedrosoi	Fpl	11MM 634	Japan
3777	D2	M1	2	F. pedrosoi	Fpl	T1MM 637	Japan
3778	D2	M1	2	F. pedrosoi	Fp1	TIMM 639	Japan
3779	D2	M1	2	F. pedrosoi	Fp1	TIMM 642	Japan
3780	D2	M1	2	F. pedrosoi	Fp1	TIMM 656	Japan
3781	D2	M1	2	F. pedrosoi	Fp1	TIMM 661	Japan
3782	D2	M1	2	F. bedrosoi	Fn1	TIMM 664	Iapan
3783	D2	M1	2	F hedrosoi	Fnl	TIMM 666	Iapan
2704	D2	MI	2	E hadroooi	Fp1	TIMM 660	Japan
370T	D2	1VI 1 N / 1	4	F b c b c b c b c b c c c c c c c c c c	трі Е-1	TINANA 009	Japan
3/03	DZ D2		2	г. pearosoi	rpi		Japan
3786	D2	Ml	2	F. pedrosoi	Fpl	TIMM 676	Japan
3787	D2	M1	2	F. pedrosoi	Fp1	TIMM 677	Japan
3788	D2	M1	2	F. pedrosoi	Fp1	TIMM 683	Japan
3789	D2	M1	2	F. pedrosoi	Fp1	TIMM 684	Japan
3790	D2	M1	2	F. pedrosoi	Fpl	TIMM 685	Japan
3791	— – П?	M1	- 2	F. hedrosoi	Fn1	TIMM 686	Ianan
3709	D9	M1	- 9	F hadrosoi	Fn1	TIMM 697	Japan
3732	D2	1111	4	r. peurosoi	r pi		Japan
3793	D2	MI	2	F. pedrosoi	Fpl	11MM 688	Japan
3794	D2	M1	2	F. pedrosoi	Fp1	TIMM 689	Japan
3795	D2	M1	2	F. pedrosoi	Fp1	TIMM 690	Japan
3796	D2	M1	2	F. pedrosoi	Fp1	Clinical isolate	Japan
3797	D1	M1	1	F. pedrosoi	Fp4	TIMM 532	USA
3798	D1	M1	1	F. pedrosoi	Fp4	IFM 4915	Mexico
2.00	~ .			T	- P'	1010	

Table 1. A F. compacta and 131 F. pedrosoi strains used in this study. (1)

		10)7

Table 1. AF	compacta and	131 F.	pedrosoi strains	used in	this study. ((2)
---------------	--------------	--------	------------------	---------	---------------	-----

			1	1			
KMU no.	Dde I*	Msp I**	rDNA type	Species	mtDNA type	Origin	Country
3800	D1	M1	1	F. pedrosoi	Fp4	IFM 4917	Venezuela
3801	D1	M1	1	F. pedrosoi	Fp4	IFM 4918	Venezuela
3802	D3	M1	4	F. bedrosoi	Fp3	IFM 41517	Venezuela
3803	D3	M1	4	F. pedrosoi	Fp3	IFM 41518	Venezuela
3804	D3	M1	4	F. pedrosoi	Fp3	IFM 41519	Venezuela
3805	D1	M1	1	F hedrosoi	Fp4	IFM 41520	Venezuela
3806	D1	M1	1	F pedrosoi	Fp4	IFM 1415A	Colombia
3807	D4	M3	5	F pedrosoi	Fp5	IFM 41867	Colombia
3808	D5	M4	6	F pedrosoi	Fp6	IFM 41868	Colombia
3800	D3	M1	2	F pedrosoi	Fp1	IFM 41705	China
3810	D2	M1	2	F pedrosoi	Fp1	IFM 41706	China
2010	D2 D2	M9	2	F. pedrosoi	Fp1	MMC 49	Thoiland
2011	D2 D2	M2	3	F. pedrosoi	r pz Fp2	ID A 1	Madagassar
3012	D2 D2	M2	3	F. peurosoi	r pz Fp2		Madagascar
2015	D2	M2	3	F. peurosoi	r pz En 2		Madagascar
2015	D2	IVIZ	3	F. peurosoi	F p2		Madagascar
2017	D2 D2	IVIZ MO	3	F. pearosoi	гр2 Б-9	IP AIU	Madagascar
3017	D2	IVIZ	3	F. pearosoi	грд	IP AII	Madagascar
3818	D2 D0	NIZ	3	F. pearosoi	Fp2	IP A15	Madagascar
3819	D2	M2	3	F. pedrosoi	Fp2	IP A15	Madagascar
3820	D2	M2	3	F. pedrosoi	Fp2	IP A16	Madagascar
3821	D2	M2	3	F. pedrosoi	Fp2	IP A17	Madagascar
3822	D2	M2	3	F. pedrosoi	Fp7	IP A18	Madagascar
3823	D2	M2	3	F. pedrosoi	Fp2	IP A19	Madagascar
3824	D2	M2	3	F. pedrosoi	Fp2	IP A20	Madagascar
3825	D2	M2	3	F. pedrosoi	Fp2	IP A21	Madagascar
3827	D2	M2	3	F. pedrosoi	Fp2	IP A30	Madagascar
3828	D2	M2	3	F. pedrosoi	Fp2	IP A32	Madagascar
3829	D2	M2	3	F. pedrosoi	Fp2	IP A33	Madagascar
3831	D2	M2	3	F. pedrosoi	Fp2	IP A37	Madagascar
3842	D2	M1	2	F. pedrosoi	Fp1	Clinical isolate	Japan
3846	D1	M1	1	F. pedrosoi**	* Fp4	IFM 4887	Argentina
3847	D2	M1	2	F. pedrosoi	Fp1	IFM 4889	Japan
3848	D2	M1	2	F. pedrosoi	Fp1	IFM 4912	Japan
3849	D2	M1	2	F. pedrosoi	Fp1	IFM 4913	Japan
3850	D1	M1	1	F. pedrosoi	Fp4	IFM 4914	Venezuela
3851	D2	M1	2	F. pedrosoi	Fp1	IFM 5070	Japan
3853	D2	M1	2	F. pedrosoi	Fp1	IFM 41521	Japan
3854	D2	M1	2	F. pedrosoi	Fp1	IFM 41522	Japan
3855	D2	M1	2	F. pedrosoi	Fp1	IFM 41523	Japan
3856	D2	M1	2	F. pedrosoi	Fp1	IFM 41524	Japan
3857	D2	M1	2	F. pedrosoi	Fp1	IFM 41525	Japan
3858	D2	M1	2	F. pedrosoi	Fp1	IFM 41526	Japan
3859	D2	M1	2	F. pedrosoi	Fp1	IFM 41527	Japan
3860	D2	M1	2	F. pedrosoi	Fp1	IFM 41528	Japan
3861	D2	M1	2	F. pedrosoi	Fp1	IFM 45991	Japan
3862	D2	M1	2	F. pedrosoi	Fp1	IFM 45992	Japan
3863	D2	M1	2	F. pedrosoi	Fp1	IFM 45993	Japan
3864	D2	M1	2	F. pedrosoi	Fp1	IFM 45994	Japan
3927	D2	M1	2	F. pedrosoi	Fp1	AMMRL 116.5	Australia
3928	D2	M1	2	F. pedrosoi	Fp1	AMMRL 116.7	Australia
3929	D2	M1	2	F. pedrosoi	Fpl	AMMRL 116.8	Australia
3930	D2	M2	3	F. bedrosoi	Fp2	AMMRL 116.9	Australia
4015	D1	M1	1	F. pedrosoi	Fp4	220	Mexico
4016	D1	M1	1	F. bedrosoi	Fn4	238	Mexico
4017	D2	M1	2	F. hedrosoi	Fn1	278	Mexico
4043	D1	M1	1	F hedrocoi	Fp4	Clinical isolate	Brazil
4044	D1	M1	1	F hedrocoi	грт Fn4	Clinical isolate	Brazil
4067	10	N/1	1	E hadrosoi	Fr 1	Clinical isolate	Japan
4082	D2	N/1	∠ 9	E hadrosoi	Fp1	Clinical isolate	Brozil
<u>4114</u>	D2 D9	тутт N/Г 1	2	F hadroosi	r pi En 1	Clinical isolate	Japan
4.101	D2	1VI 1 N/I 1	2	F hadroosi	r pr E1	Clinical isolate	Japan
3760	D2 D1	IVI I N/T 1	∠ 1	r. pedrosoi	r p1 E 4	Unnical Isolate	Japan
2109	DI	11/11	1	г. compacta	гр4	11 IVI 4000	USA

* indicates RFLP pattern with Dde I. D1 - D5 correspond to D1 - D5 in Figure 1.

** indicates RFLP pattern with Msp I. M1 - M4 correspond to M1 - M4 in Figure 1.

*** indicates the type strain of this species.

KMU: Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan.

IFM: Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba, Japan.

MMC: School of Medicine, Chiang Mai University, Chiang Mai, Thailand.

RV: Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium.

TIMM: Research Center for Medical Mycology, Teikyo University, Tokyo, Japan.

IP: Institut Pasteur, Paris, France.

AMMRL: Australian National Reference Laboratory in Medical Mycology, Sydney, Australia.

Species	KMU no.	Origin
Cladophialophora carrionii	3408	ATCC 16264
Exophiala dermatitidis	3000	ATCC 28869
E. jeanselmei	2714	ATCC 34123
E. spinifera	3220	ATCC 18218
Hortaea werneckii	3443	IFM 4885
Phialophora parasitica	3536	IFM 4924
P. repens	3535	IFM 4925
P. richardsiae	3427	NHL 2924
P. verrucosa	3471	ATCC 38561
Rhinocladiella aquaspersa	3533	ATCC 24410
R. atrovirens	3532	IFM 4931

ATCC: American Type Culture Collection, Rockville, USA. IFM: same as in Table 1.

NHL: National Institute of Hygienic Sciences, Tokyo, Japan.

representatives of each type and compared the differences that exist within each type and those between types. We used the information to construct a phylogenetic tree and compared it with a corresponding tree based on mtDNA sequences.

Further, to investigate whether ITS-RFLP can be used for identifying *F. pedrosoi*, we compared the results for *F. pedrosoi* with those for representative strains of 11 other pathogenic species of dematiaceous fungus.

Materials and Methods

Species and strains

One hundred thirty-one strains of *F. pedrosoi* kept in the Department of Dermatology, Kanazawa Medical University (Table 1) were used and, for comparison, representative strains of 11 other species of dematiaceous fungi (Table 2). The type classification based on mtDNA-RFLP of the *F. pedrosoi* strains and the strains' geographical origins are shown in Table 1.

Experimental methods

The base sequence of the ITS region in F. pedrosoi (IFM 4887 = CBS 271.37: type strain) were obtained from GenBank. The computer software GENETYX-MAC version 10.1 (Software Development Co., Ltd., Tokyo, Japan) was used to select 2 restriction enzymes, *Dde* I and *Msp* I, which are capable of cutting the ITS region into fragments of appropriate length and number. Total DNA was extracted from each strain and the ITS regions of the rDNA was amplified by polymerase chain reaction (PCR) using the pair of primers ITS 1 and ITS 4^{4} . PCR products were digested with the restriction enzymes *Dde* I or *Msp* I, and then subjected to electrophoresis. The *F. pedrosoi* were classified into types according to their RFLP patterns.

1. Total DNA extraction for PCR

Total DNA were extracted by the modified Makimura's method⁵⁾. Fungi were picked up from each colony cultured on Sabouraud's slant agar and soaked in 70% ethanol for 24 hours. Fungi, about the size of a pin head, were transferred to a sample tube and washed once in buffer (200 mM Tris-HCl, 0.5% W/V SDS, 25 mM EDTA, 250 mM NaCl) to lyse the filamentous fungus. Next, 300 μl of the buffer was added and the cells were disrupted with a micro-mixer for approximately 15 seconds. The mixture was kept at 100°C for 5 minutes and then 150 μl of 3 M sodium acetate was added. The mixture was agitated, and allowed to stand at -20° C for 10 minutes. After centrifuging at $12,000 \times g$ for 5 minutes, the supernatant was transferred to a new tube, to which 400 μl of phenol/chloroform was added. The mixture was centrifuged at 19,000 \times g for 15 minutes, and the supernatant was transferred to another tube to which 400 μl of chloroform was added. This mixture was centrifuged at 19,000 \times g for 20 minutes, and the supernatant was transferred to a new tube, to which 350 μl of propanol was added. After mixing, the solution was centrifuged at 19,000 \times g for 20 minutes. The propanol was then discarded, 200 μl of 70% ethanol was added, and the mixture was centrifuged at 19,000 \times g for 20 minutes. Then ethanol was removed. After allowing it to stand at room temperature for 10 minutes, 30 μl of ultra-pure water was added to dissolve the DNA. The solution was refrigerated and $2 \mu l$ used as a template for PCR.

2. PCR

For PCR, a TaqDNA Master Mix Kit (QIAGEN GmbH, 40724 Hilden, Germany) was used. PCR was performed using a 20 μl mixture consisting of 2 μl of the template, 0.2 μl of Taq DNA polymerase, 2 μl of \times 10 buffer, 4 μl of Q solution, 0.2 μl of dNTP (10 mM), 0.2 μl of primer ITS1 (50 μ M), 0.2 μl of dH₂O. The thermal cycler was set at 94°C for 4 minutes, 35 cycles of 94°C for 1 minutes, 58°C for 2 minutes and then 72°C for 1.5 minutes, after which it was maintained at 4°C.

3. Digestion of PCR products with restriction enzymes

Five microliters of PCR products was mixed with 1 μl of either the restriction enzyme *Dde* I or *Msp* I (TOYOBO, Osaka, Japan), 1.5 μl of high or medium buffer (TOYOBO), respectively, and 7.5 μl of ultra-pure water, and incubated at 37°C for 1 hour.

4. Detection of RFLP patterns

Five microliters of the digested PCR products was mixed with 1 μl of loading dye, loaded on a 6% acrylamide gel, and subjected to electrophoresis at 100 V. After 45 min, the gel was stained with 5 μ g/ml of ethidium bromide solution, and the electrophoretic patterns were photographed under a transilluminator. Steps 1 through 4 took about 8 hours.

5. Nucleotide sequence

The rDNA-ITS regions of representative strains that had been classified by Kawasaki et al.¹⁾ into 7 types (Fp1 to Fp7) according to their mtDNA-RFLP, were amplified by PCR using the primers ITS1 and ITS4 together. After agarose gel electrophoresis, PCR products of approximately 0.6 kb were recovered from the agarose gel by a TOYOBO DNA purification kit (TOYOBO). Using the recovered DNA as a template and using the same primers, they were labeled by a cycle sequencing reaction with ABI Prism Big DyeTM Terminator Cycle Sequencing Ready Reaction Kits (PE Biosystems, USA). The base sequence was automatically read by an ABI PRISM TM 310 Genetic Analyzer (PE Biosystems). The sequencing reaction was repeated a total of 3 times for each strain using primers ITS1, ITS2, ITS3, and ITS4.

The base sequence alignment was done using gene analysis software, GENETYX-MAC 10.1 and then modified manually. The NJ tree was reconstructed by the software using the sequence of the ITS regions of *P. verrucosa* (NIH8701), obtained from GenBank, as an out-group.

Results

Each of the 131 strains showed 1 of 5 ITS-RFLP band patterns (D1 - D5) when digested with *Dde* I. The D1 group had 4 bands of 300, 150, 130, and 80 bp, D2 had 5 bands of 300, 130, 80, 65 and 60 bp, D3 had 3 bands of 300, 210, and 130 bp, D4 had 3 bands of 300, 200, and 100 bp, and D5 had 3 bands of 300, 200, and 130 bp (Fig. 1). Compared with mtDNA-RFLP patterns (Fp1 to Fp7) reported by Kawasaki *et al.*¹⁾, without exception, D1 strains corresponded to the Fp4 strains, D2 strains corresponded to the Fp1, Fp2, and Fp7 strains, D3 strains to the Fp3 strains, D4 strains to the Fp5 strains, and D5 strains to the Fp6 strains.

Four ITS-RFLP patterns (M1 - M4) were observed when digested with Msp I. M1 had three bands of 500, 100 and 50 bp, M2 had 4 bands of 400, 120, 100 and 50 bp, M3 had 4 bands of 300, 150, 120 and 60 bp, and M4 had 4 bands of 350, 120, 100 and 50 bp (Fig. 1). Compared with mtDNA-RFLP patterns (Fpl -Fp7) reported by Kawasaki et al.1), without exception, M1 strains corresponded to the Fp1, Fp3, and Fp4 strains, M2 strains to the Fp2 and Fp7 strains, M3 strains to the Fp5 strains, and M4 strains to the Fp6 strains. When the electrophoretic patterns of the Dde I digests and the Msp I digests were considered together, the 131 strains could be classified into 6 types: D1M1 (hereafter referred to as rDNA-type 1), D2M1 (rDNA-type 2), D2M2 (rDNA-type 3), D3M1 (rDNA-type 4), D4M3 (rDNA-type 5),

Fig. 1. rDNA-ITS-RFLP patterns with Dde I and Msp I

M: size marker, D1 - D5: RFLP patterns with Dde I, M1 - M4: RFLP patterns with Msp I.

Fig. 2. rDNA-ITS-RFLP patterns of 11 other dematiaceous fungi with *Msp* I

Lane 1, F. pedrosoi rDNA-Type 3; lane 2, F. pedrosoi rDNA-Type 1; lane 3, E. spinifera; lane 4, E. dermatitidis; lane 5, E. jeanselmei; lane 6, C. carrionii; lane 7, P. verrucosa; lane 8, P. repens; lane 9, P. parasitica; lane 10, P. richardsiae; lane 11, R. aquaspersa; lane 12, R. attrovirens; lane 13, H. werneckii; lane M, size marker.

Fig. 3. rDNA-ITS-RFLP patterns of 11 other dematiaceous fungi with Dde I

Lane 1, F. pedrosoi rDNA-Type 3; lane 2, F. pedrosoi rDNA-Type 1; lane 3, E. spinifera; lane 4, E. dermatitidis; lane 5, E. jeanselmei; lane 6, C. carrionii; lane 7, P. verrucosa; lane 8, P. repens; lane 9, P. parasitica; lane 10, P. richardsiae; lane 11, R. aquaspersa; lane 12, R. attrovirens; lane 13, H. werneckii; lane M, size marker.

and D5M4 (rDNA-type 6). Compared with typing based on their mtDNA, rDNA-type 1 strains corresponded to the Fp4 strains, rDNAtype 2 to the Fp1, rDNA-type 3 to the Fp2 and Fp7, rDNA-type 4 to the Fp3, rDNA-type 5 to the Fp5, and rDNA-type 6 to the Fp6. Fp2 and Fp7 could not be differentiated by ITS-RFLP in the present study. These results are summarized in Table 1.

The ITS-RFLP of F. compacta had the rDNAtype 1 (D1 and M1) pattern. Furthermore, the ITS-RFLP patterns of the 11 species of phaeoid fungi were different from those of F. pedrosoi (Fig. 2, 3).

Gene analysis

The base sequences of the ITS regions of the 18 strains were registered in GenBank and their accession numbers are shown in Figure 4. The maximum base sequence differences were 6 out of 647 among the 4 rDNA-type 1 strains, 8 out of 646 among the 4 rDNA-type 2 strains, 3 out of 643 among the 5 rDNA-type 2 strains, and 0 out of 647 among the 3 rDNA-type 4 strains.

A tree for 17 strains of F. pedrosoi and 1 strain of F. compacta is shown in Figure 4. The tree is mainly divided into 3 branches, with rDNA-type 1 - 4 and F. compacta forming one, and rDNA-type 5 and rDNA-type 6 forming the other two. The branching closely matches that in the tree for the 7 types classified by their mtDNA, though the branch for Fp7 branches off further from Fp2 in the mtDNA classification.

Discussion

One-hundred-thirty-one strains of *F. pedrosoi* were classified into 6 types based on two sets of ITS-RFLP patterns obtained by two restriction enzymes. RFLP patterns of all 6 types differed from those of the 11 other species of dematia-ceous fungi, indicating that *F. pedrosoi* can be clearly identified, typed and differentiated by ITS-RFLP analysis.

In the present study, however, the Fp2 and Fp7 strains of Kawasaki *et al.*¹⁾ could not be

Fig. 4. A phylogenetic tree of 6 rDNA-types of *F. pedrosoi* and *F. compacta*, based on the nucleotide sequences of 5.8S rRNA gene and internal transcribed spacers

The mtDNA type and the accession number of sequence are shown in parenthesis after each KMU number. * indicates *F. compacta*. The sequence of *P. verrucosa* (NIH 8701) was from GenBank. Numbers in parentheses on the branches indicate bootstrap values of 1000 trials. Values over 70% are shown.

distinguished and they were both classed as rDNA-type 3. Except for a single strain of Fp7, which was indistinguishable from Fp2, our findings suggest that the type classification based on mtDNA and that based on rDNA are nearly identical. Therefore, these type classifications are reliable. Since the ITS-RFLP typing matches the mtDNA-RFLP typing, each rDNA-type shows geographical specificity as well as a mtDNAtype.

Comparison of the base sequences of ITS regions of 6 rDNA-types showed that the differences within each type (0 - 7 bases) were clearly smaller than those between types (13 - 72 bases), and the strains of each rDNA-type formed a clade on the phylogenetic tree. Therefore the classification of the *F. pedrosoi* strains based on ITS-RFLP with *Dde* I and *Msp* I is phylogenetically reliable.

Whether *F. pedrosoi* and *F. compacta* are actually separate species has been a topic of discussion⁶⁻⁸⁾. In their molecular biology, however, mtDNA analysis has shown them to be conspecific⁹⁾. Attili *et al.*¹⁰⁾ performed rDNA-RFLP analysis and determined the base sequence of the ITS 1 region in 13 strains of *F. pedrosoi* and 3 *F. compacta*; they reported that the two fungi could not be distinguished by genetic analysis. Furthermore, Caligiorne *et al.*¹¹⁾ claimed that they could not be distinguished by the random amplification of polymorphic DNA (RAPD) analysis. Moreover, Abliz *et al.*¹²⁾ reported

similar results using the species-specific primers for *F. pedrosoi*. Although the strains used were different from theirs, in the present study *F. compacta* showed the same RFLP patterns as those of rDNA-type 1 *F. pedrosoi*, strongly suggesting that *F. pedrosoi* and *F. compacta* are conspecific.

Furthermore, considering that recombination of the nuclear rDNA can occur during sexual reproduction and that mtDNA is inherited through the maternal cytoplasm, the fact that the typing based on the rDNA agrees with the typing based on the mtDNA seems to imply that *F. pedrosoi* has been reproducing only asexually for a very long time, and during this period differentiated into several types.

From a phylogenetic tree based on mtDNA analysis, Kawasaki *et al.* (1) suggested that Fp1 (rDNA-type 2), which is distributed extensively throughout Asia and Africa, might be a more ancient strain than Fp4 (rDNA-type 1), which is predominant in North and South America.

From the phylogenetic tree based on base sequences, we suggest that rDNA-types 5 and 6

diverged first in South America, followed later by the divergence of rDNA-types 1 - 4 diverging one after the other. It is hard to tell the sequence in which rDNA-types 1 - 4 diverged, however, because they are extremely closely related to each other.

Until now, *F. pedrosoi* has been identified by its morphological features. However, since the variety of morphological features of all the fungi is so vast, identification by morphology is not always possible. In comparison, ITS-RFLP analysis is superior in that it is much faster and less laborious. Moreover, ITS-RFLP analysis can be used reliably to type even a small amount of fungus taken from just a part of a cultured colony. The results are highly reproducible and a large number of samples can be analyzed at the same time. We consider ITS-RFLP analysis to be extremely useful for molecular epidemiological studies, as it reveals geographical specificity.

References

- Kawasaki M, Aoki M, Ishizaki H, Miyaji M, Nishimura K, et al.: Molecular epidemiology of Fonsecaea pedrosoi using mitochondrial DNA analysis. Medical Mycology 37: 435-440, 1999.
- Untereiner WA, Naveau FA: Molecular systematic of the Herpotrichiellaceae with an assessment of the phylogenetic positions of *Exophiala dermatitidis* and *Phialophora americana*. Mycologia 91: 67-83, 1999.
- Caligiorne RB, Resend MA, Dias-Neto E, Oliveira SC, Azevwdo V: Dematiaceous fungal pathogens: analysis of DNA gene polymorphism by polymerase chain reaction-restriction fragment length polymorphism. Mycoses 42: 609-614, 1999.
- 4) White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis, M.A., Gelfand, DH Sninsky, JJ and White TJ. PCR protocols: A guide to Methods and Applications. San Diego, CA: Academic Press, pp.315-322, 1990.
- Makimura K, Murayama SY, Yamaguchi H: Detection of a wide range of medically important fungi by the polymerase chain reaction. J Med Microbiol 40: 358-364, 1994.
- Takeda N, Suzuki S: Immunochemical studies on chromoblastomycosis. II. Serological relationship among galactomannans from 3 species of the genus *Hormodendrum*, *H. pedrosoi*, *H. compactum* and *H. dermatitidis*. Nippon Saikingaku Zasshi 29: 757-763, 1974. (in Japanese)
- 7) Iwatsu T, Miyaji M, Taguchi H, Okamoto S: Evaluation of skin test for chromoblastomycosis using antigens prepared from culture filtrates of *Fonsecaea pedrosoi*, *Phialophora verrucosa*, *Wangiella*

dermatitidis and Exophiala jeanselmei. Mycopathologia 77: 59-64, 1982.

- 8) Ibrahaim-Granet O, de Bievre C, Romain F, Letoffe S: Comparative electrophoresis, isoelectric focusing and numerical taxonomy of some isolates of *Fonsecaea pedrosoi* and allied fungi. J Med Vet Mycol 23: 253-263, 1985.
- Kawasaki M: Typing and molecular epidemiology of some black fungi based on analysis of the restriction fragment length polymorphism in the mitochondrial DNA. Jpn J Med Mycol 37: 129-133, 1996.
- 10) Attili DS, Hoog GS, Pizzirani-Kleiner AA:

rDNA-RFLP and ITS1 sequencing of species of the genus *Fonsecaea*, agents of chromoblastomycosis. Medical Mycology **36**: 219-225, 1998.

- Caligiorne RB, Resende MA, Paiva E, Azevedo V: Use of RAPD (random amplified polymorphic DNA) to analyse genetic diversity of dematiaceous fungal pathogens. Can J Microbiol 45: 408-412, 1999.
- 12) Abliz P, Fukushima K, Takizawa K, Nieda N, Miyaji M, Nishimura K: Rapid identification of the genus *Fonsecaea* by PCR with specific oligonucleotide primers. J Clin Microbiol 41: 873-876, 2003.